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THEORY OF RANDOM MOTION OF PARTICLES IN A 

SUSPENSION 

A. N. Latkin UDC 532.545 

We estimate the self-diffusion coefficient of particles in a moving suspension, 
taking into account pseudoturbulent and Brownian fluctuations. 

Heat and mass transport in dispersed systems depend, to a large degree, on the random 
motion of the particles, which is caused by different physical factors. For quasilaminar 
motion fluctuations result from ordinary Brownian motion and from concentration fluctuations 
of the particles produced by the flow of the continuous phase (so-called pseudoturbulent 
motion). If the particles are sufficiently small, the only significant contribution to 
their random motion is isotropic Brownian motion, which depends on the concentration of the 
dispersed phase. Hence diffusion processes in suspensions are quite different from self- 
diffusion of a single particle in a pure liquid. Brownian motion is described in [i] for 
low concentrations. The results of [I] are generalized in [2] to higher concentrations. As 
the particle radius increases, pseudoturbulent motion begins to play an important role. 
Pseudoturbulent motion was considered in [3], neglecting Brownian fluctuations. From the 
results of [3] one can compute the mean square velocity fluctuation of the particles and 
the self-diffusion coefficients of the medium and the dispersed particles. However, because 
of nonlinear collective interactions in dispersions, Brownian motion (which smoothes out 
concentration fluctuations) can be important in diffusion, even when the amplitude of Brown- 
ian motion is relatively small. A simple superposition of Brownian and pseudoturbulent mo- 
tion is not correct in concentrated suspensions because of the nonlinearity of the proces- 
ses. In the present paper pseudoturbulent diffusion is considered for the same assumptions 
used in [3], but with the effect of the Brownian motion of the particles taken into account. 

Because of the anisotropy of pseudoturbulence, one must consider the self-diffusion 
tensor. The principal components of this tensor can be represented in the form [2] 

Dll -- D~q ) + D (b), Dz2 = P ~  ~- D(b), ( 1 ) 

where t h e  s u p e r s c r i p t s  (p)  and (b) r e f e r  t o  p s e u d o . t u r b u l e n t  and Brownian m o t i o n ,  r e s p e c -  
t i v e l y .  Here the first Cartesian coordinate is chosen to lie along the average relative 
velocity u of the phases of the suspension. Using the theory of [3], the following rela- 
tions for the principal self-diffusion coefficients were obtained in [2]: 

D~) = D~ "lau)~(p,'i " --22 S (9)[1 - -  z) z Io -+- 2z (1 --  z)12 + z21a], 

D (2~ = (au)~ z 28 (O) [12 - -  I~l,  ( 2 ) 
ID~p) D(pL 
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Fig. i. Dependence of the dimensionless diffusion coeffic- 
/ x F \ 

ients Dl kp) and D2 kp) on p; the numbers labelling the curves 
are the values of the parameter <. Solid curves: with 

Brownian diffusion taken into account; dashed curves: with 
D (b) = 0. 

i t~dt D~ +D (b) 9dl 
Ix = t 2 @ ?2 D ~  n(p) z = -- 

- -  ~ 2 2  d 

d = (1 - -  p ) 4  + od~, M(O)  = (1 - -  p ) -~ /~ ,  

where p, is the concentration of particles of the dispersed phase assuming close packing; 
d o and d I are the densities of the liquid and solid phases, respectively; a is the particle 
radius. The function M(p) empirically describes the dependence of the effective viscosity 
of the suspension P/P0 on the concentration of its dispersed phase (P0 is the viscosity of 
the pure liquid). 

The self-diffusion coefficient due to Brownian motion is [2] 

�9 O(b) = Do M-~ (0), Do = __kT ( 3 )  
6 ~ o a  ' 

where kT is the temperature in energy units. This equation generalizes the result of [I] 
(valid only for dilute systems) to concentrated suspensions. 

One of the important parameters of a suspension is the concentration of solid parti- 
cles, therefore the behavior of the self-diffusion coefficients as functions of p is of 
particular interest. We introduce the following dimensionless coefficients: 

D r )  D~ , D r ) :  *-,22~(P) 
a u  a u  

Then f rom (2)  and (3)  we can f i n d  t h e  dependence  o f  t h e . d i m e n s i o n l e s s  q u a n t i t i e s  DI (P)  and 
D2(P) on t h e  c o n c e n t r a t i o n  p f o r  t h e  e n t i r e  i n t e r v a l  0 ~ p 5 p ,  ( F i g .  1 ) .  The e f f e c t  o f  
Brownian f l u c t u a t i o n s  on p s e u d o t u r b u l e n t  d i f f u s i o n  i s  e v i d e n t  f rom F i g .  1, as  i s  t h e  e f f e c t  
o f  t h e  d e n s i t y  r a t i o  < = d~ /d0 .  The b e h a v i o r  o f  t h e  s e l f - d i f f u s i o n  c o e f f i c i e n t s  shown in  
F i g .  1 i s  e x p l a i n e d  as  f o l l o w s .  As t h e  c o n c e n t r a t i o n  0 i n c r e a s e s ,  s t e r i c  i n t e r a c t i o n s  be -  
tween t h e  p a r t i c l e s  become more i m p o r t a n t  and t h i s  s t i m u l a t e s  a m i g r a t i o n  o f  D a r t i c l e s  i n t o  
a r e g i o n  where  t h e  d e n s i t y  i s  r e l a t i v e l y  s m a l l .  The d e c r e a s e  o f  D I ( P )  and D2(P) as  p + p ,  
= 0 .6  r e f l e c t s  t h e  h i n d r a n c e  o f  s e l f - d i f f u s i o n  in  a s u s p e n s i o n  where t h e  s o l i d  phase  i s  
n e a r l y  c l o s e - p a c k e d .  The d i f f e r e n c e  be tween  t h e  s o l i d  and dashed  c u r v e s  a t  s m a l l  p shows 
t h e  e f f e c t  o f  Brownian d i f f u s i o n  on t h e  s m o o t h i n g  o f  c o n c e n t r a t i o n  f l u c t u a t i o n s ,  which i s  
t h e  p h y s i c a l  c a u s e  o f  p s e u d o t u r b u l e n t  m o t i o n  o f  t h e  p a r t i c l e s  ( a s  n o t e d  a b o v e ) .  I t  f o l l o w s  
f rom (3)  t h a t  as  t h e  c o n c e n t r a t i o n  o f  t h e  d i s p e r s e d  phase  i n c r e a s e s ,  t h e  e f f e c t  o f  Brownian 
f l u c t u a t i o n s  o f  t h e  p a r t i c l e s  d i m i n i s h e s ;  t h i s  i s  a l s o  shown in  F i g .  1. 

A c l e a r e r  i l l u s t r a t i o n  o f  t h e  e f f e c t  o f  Brownian s e l f - d i f f u s i o n  on p s e u d o t u r b u l e n t  
f l u c t u a t i o n s  i s  o b t a i n e d  by i n t r o d u c i n g  t h e  d i m e n s i o n l e s s  q u a n t i t y  

~2 D~2 D~ ) + D (b) 

1 + @ Dn D ~  --}- D (b) ' 

which  p l a y s  t h e  r o l e  o f  an a n i s o t r o p y  f a c t o r  f o r  s e l f - d i f f u s i o n .  
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Fig. 2. Concentration dependence of the 
anisotropy factors 6 for self-diffusion 
with both pseudoturbulent and Brownian 
fluctuations of the solid particles 
taken into account (solid curves) and 6, 
for self-diffusion with Brownian fluc- 
tuations neglected (dashed curves); the 
numbers labelling the curves are values 
of the parameter K. 
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Fig. 3. Dependence of the coefficients Di(P) and D2(P) on ~; 
the numbers labelling the curves correspond to the concentra- 
tions of the dispersed phase p, the solid and dashed curves 
are as defined in Fig. i. 

The dependence of this quantity on the concentration of the dispersed phase is shown in 
Fig. 2 for different values of the parameter < = dl/d0, together with the dependence of 6, 
on p, where 6, is 6 when the effect of the Brownian motion of the particles on diffusion is 
neglected. The dependence of 6, on p is the same as in [3J. The curves deviate at low p 
because the dimensionless anisotropy factor 6 approaches unity at low particle cooncentra- 
tions, since Dii(P ) and D22(P) approach zero, while D (b) approaches D o . Hence at low con- 
centrations we have classical isotropic Brownian diffusion. 

It is evident from (2) that there is a fundamental difference between pseudoturbulent 
and Brownian fluctuations because of the dependence of Di(P ) and D2(P) on d o and di. The 
dependence of the principal dimensionless coefficients of the pseudoturbulent self-diffusion 
tensor on K = di/d 0 is shown in Fig. 3. 

The results of [2, 3] show that pseudoturbulence becomes more important as the particle 
radius increases. We see from (2) that the dependence on particle radius is not obvious, 
since the expression for the Brownian self-diffusion coefficient involves the classical Ein- 
stein coefficient, which in turn depends on the particle radius a. 

The dependence of Dii(P) and D22(P) on a is shown in Fig. 4 for p = 0.I (we saw from 
Fig. 1 that the difference in the self-diffusion tensor with and without Brownian isotropic 
motion taken into account is striking for small p). The dashed (D (b) = 0) and the solid 
curves approach one another as a + 10 -6 because of the decreasing importance of the Brownian 
motion of the solid particles with increasing particle radius; this is consistent with sim- 
ple estimates following from (2) and (3). 

The expressions of [2, 3] for the mean-square velocities of longitudinal and transverse 
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Fig. 4. Dependence of DzI(P ) and D22(P ) on particle radius 
a; the numbers labelling the curves are values of the 
parameter K. The dashed and solid curves are as defined in 
Fig. i. 

pseudoturbulent fluctuations are independent of the self-diffusion coefficients, in the 
framework of the assumptions made in [2, 3]. It was also noted in [2, 3] that because of 
the independence of the physical mechanisms responsible for the generation of Brownian and 
pseudoturbulent particle fluctuations, one can assume a simple superposition of these mo- 
tions. 

Hence the results of [2, 3] and the present paper describe the behavior of a suspension 
whose solid phase is subject to Brownian and pseudoturbulent motion. 

NOTATIONS 

a, particle radius of the solid phase of the suspension; d, average density of the sus- 
pension; D, self-diffusion tensor; k, Boltzmann constant; u, average relative velocity of 
the phases of the suspension; T, temperature; ~, anisotropy factor of the suspension; K, 
ratio of the densities of the phases; p, volume concentration of the dispersed phase. 
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